Analytical characterization of the persistent residues after microbial degradation of mineral oils

The residual fractions remaining after microbial degradation of diesel fuel, different deparaffinized raffinates and extracts from long-term contaminated soils were analyzed by liquid chromatography, gas chromatography, infrared spectrometry and mass spectrometry. The quantity of saturated hydrocarb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 1996-11, Vol.356 (6), p.378-384
Hauptverfasser: RIIS, V, MIETHE, D, MÖDER, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The residual fractions remaining after microbial degradation of diesel fuel, different deparaffinized raffinates and extracts from long-term contaminated soils were analyzed by liquid chromatography, gas chromatography, infrared spectrometry and mass spectrometry. The quantity of saturated hydrocarbons decreased after the microbial treatment, whereas the portion of polar compounds increased. The total content of aromatics changed only insignificantly. n-Paraffins < C26 were found to be no longer present in mineral oils degraded to exhaustion. Infrared spectrometry revealed oxygen compounds in the residues, mainly ketones, fatty acids and esters. Elementary analysis confirms the presence of nitrogen, oxygen and sulphur compounds in the degraded products. The gas chromatograms of high boiling oils, as well as of residues and extracts, consist mainly of a large base "envelope" (about 95% of the total area); thus gc/ms coupling reaches the limits of its applicability. However, mass spectrometry with direct inlet gives valuable information regarding hydrocarbon type analysis. The results revealed the preferable degradation of alkanes, 1-ring aliphatics and benzenes and an enrichment of condensed cycloaliphatics and aromatics. The latter compounds are known to be resistant to microbial attack.
ISSN:0937-0633
1432-1130
1618-2650
DOI:10.1007/s0021663560378