The oxidative burst in plant disease resistance
Rapid generation of superoxide and accumulation of H2O2 is a characteristic early feature of the hypersensitive response following perception of pathogen avirulence signals. Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that...
Gespeichert in:
Veröffentlicht in: | Annual review of plant physiology and plant molecular biology 1997-06, Vol.48 (1), p.251-275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapid generation of superoxide and accumulation of H2O2 is a characteristic early feature of the hypersensitive response following perception of pathogen avirulence signals. Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils. The oxidants are not only direct protective agents, but H2O2 also functions as a substrate for oxidative cross-linking in the cell wall, as a threshold trigger for hypersensitive cell death, and as a diffusible signal for induction of cellular protectant genes in surrounding cells. Activation of the oxidative burst is a central component of a highly amplified and integrated signal system, also involving salicylic acid and perturbations of cytosolic Ca2+, which underlies the expression of disease-resistance mechanisms. |
---|---|
ISSN: | 1040-2519 2331-0960 |
DOI: | 10.1146/annurev.arplant.48.1.251 |