Conditional logistic analysis of case-control studies with complex sampling

Methods for the analysis of unmatched case-control data based on a finite population sampling model are developed. Under this model, and the prospective logistic model for disease probabilities, a likelihood for case-control data that accommodates very general sampling of controls is derived. This l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biostatistics (Oxford, England) England), 2001-03, Vol.2 (1), p.63-84
Hauptverfasser: Langholz, B, Goldstein, L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods for the analysis of unmatched case-control data based on a finite population sampling model are developed. Under this model, and the prospective logistic model for disease probabilities, a likelihood for case-control data that accommodates very general sampling of controls is derived. This likelihood has the form of a weighted conditional logistic likelihood. The flexibility of the methods is illustrated by providing a number of control sampling designs and a general scheme for their analyses. These include frequency matching, counter-matching, case-base, randomized recruitment, and quota sampling. A study of risk factors for childhood asthma illustrates an application of the counter-matching design. Some asymptotic efficiency results are presented and computational methods discussed. Further, it is shown that a 'marginal' likelihood provides a link to unconditional logistic methods. The methods are examined in a simulation study that compares frequency and counter-matching using conditional and unconditional logistic analyses and indicate that the conditional logistic likelihood has superior efficiency. Extensions that accommodate sampling of cases and multistage designs are presented. Finally, we compare the analysis methods presented here to other approaches, compare counter-matching and two-stage designs, and suggest areas for further research.To whom correspondence should be addressed.
ISSN:1465-4644
1468-4357
DOI:10.1093/biostatistics/2.1.63