Approximating Functions by Neural Networks: A Constructive Solution in the Uniform Norm

A method for constructively approximating functions in the uniform (i.e., maximal error) norm by successive changes in the weights and number of neurons in a neural network is developed. This is a realization of the approximation results of Cybenko, Hecht-Nielsen, Hornik, Stinchcombe, White, Gallant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1996-08, Vol.9 (6), p.965-978
Hauptverfasser: Meltser, Mark, Shoham, Moshe, Manevitz, Larry M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for constructively approximating functions in the uniform (i.e., maximal error) norm by successive changes in the weights and number of neurons in a neural network is developed. This is a realization of the approximation results of Cybenko, Hecht-Nielsen, Hornik, Stinchcombe, White, Gallant, Funahashi, Leshno et al., and others. The constructive approximation in the uniform norm is more appropriate for a number of examples, such as robotic arm motion, and stands in contrast with more standard methods, such as back-propagation, which approximate only in the average error norm. Copyright © 1996 Elsevier Science Ltd
ISSN:0893-6080
1879-2782
DOI:10.1016/0893-6080(95)00124-7