Physiological responses of radiata pine roots to soil strength and soil water deficit

We investigated physiological responses of radiata pine (Pinus radiata D. Don) roots to soil strength and soil water deficit by measuring the osmotic potential (Psi(pi)) and yield turgor (Y) in the elongation zone of root segments of seedlings growing (i) in polyethylene glycol 4000-containing rooti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree physiology 2000-11, Vol.20 (17), p.1205-1207
Hauptverfasser: Zou, Chris, Sands, Roger, Sun, Osbert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated physiological responses of radiata pine (Pinus radiata D. Don) roots to soil strength and soil water deficit by measuring the osmotic potential (Psi(pi)) and yield turgor (Y) in the elongation zone of root segments of seedlings growing (i) in polyethylene glycol 4000-containing rooting solution of different water potentials (Psi(s)) and (ii) in soil of different soil strengths (Q) at the same soil matric potential (Psi(m)). Root elongation rate (Deltal/Deltat) decreased progressively with decreasing Psi(s) and was associated with decreased Psi(pi) and decreased turgor pressure (P). Osmotic adjustment occurred at Psi(s) < -0.2 MPa. Over a range in Psi(s) of -0.01 to -1.0 MPa, Psi(pi) fell 0.3 MPa whereas P fell 0.7 MPa. Mean Psi in the solution experiment was 0.37 MPa and did not differ significantly with Psi(s) (P = 0.10). Root elongation rate decreased exponentially as Q increased from 0 to 3.0 MPa, and was associated with an increase in P of 0.11 MPa as a consequence of Psi(pi) decreasing by the same amount. Mean Y in the soil experiment was 0.49 MPa and did not change significantly with Q (P = 0.87).
ISSN:0829-318X
1758-4469
DOI:10.1093/treephys/20.17.1205