Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes

Organophosphate (OP) pesticides such as dimethoate and malathion intoxication has been shown to produce oxidative stress due to the generation of free radicals and alter the antioxidant defense system in erythrocytes. It is possible that vitamin E being present at the cell membrane site may prevent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutritional biochemistry 2001-09, Vol.12 (9), p.500-504
Hauptverfasser: John, Susan, Kale, Manisha, Rathore, Nisha, Bhatnagar, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organophosphate (OP) pesticides such as dimethoate and malathion intoxication has been shown to produce oxidative stress due to the generation of free radicals and alter the antioxidant defense system in erythrocytes. It is possible that vitamin E being present at the cell membrane site may prevent OP-induced oxidative damage. In the present study, rats were pretreated orally with vitamin E (250 mg/kg body wt, twice a week for 6 weeks) prior to oral administration of a single low dose of dimethoate and/or malathion (0.01% LD 50). The result showed that treatment with OP increased lipid peroxidation (LPO) in erythrocytes, however, vitamin E pretreated rats administered OP’s showed decreased LPO in erythrocytes. The increase in the activities of superoxide dismutase (SOD) and catalase (CAT) and total-SH content in erythrocytes from dimethoate and/or malathion treated rats as compared to control appears to be a response towards increased oxidative stress. Vitamin E pretreated animals administered OP’s showed a lowering in these parameters as compared to OP treated rats which indicates that vitamin E provide protection against OP-induced oxidative stress. The glutathione-S-transferase (GST) activity in erythrocytes was inhibited in OP intoxicated rats which partially recovered in vitamin E pretreated animals administered OP’s. Inhibition in erythrocyte and serum acetylcholinesterase (AChE) activity was not relieved in vitamin E pretreated rats administered OP’s probably due to the competitive nature of enzyme inhibition by OP’s. The results show that vitamin E may amelierate OP-induced oxidative stress by decreasing LPO and altering antioxidant defense system in erthrocytes.
ISSN:0955-2863
1873-4847
DOI:10.1016/S0955-2863(01)00160-7