Water Oxidation by [(tpy)(H(2)O)(2)Ru(III)ORu(III)(H(2)O)(2)(tpy)](4+)
The complex [(tpy)(C(2)O(4))Ru(III)ORu(III)(C(2)O(4))(tpy)].8H(2)O (1.8H(2)O) (tpy is 2,2':6',2"-terpyridine) has been prepared and characterized by X-ray crystallography and FTIR, resonance Raman, and (1)H NMR spectroscopies. From the results of the X-ray analysis, angleRuORu is 148....
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 1998-12, Vol.37 (25), p.6476-6484 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complex [(tpy)(C(2)O(4))Ru(III)ORu(III)(C(2)O(4))(tpy)].8H(2)O (1.8H(2)O) (tpy is 2,2':6',2"-terpyridine) has been prepared and characterized by X-ray crystallography and FTIR, resonance Raman, and (1)H NMR spectroscopies. From the results of the X-ray analysis, angleRuORu is 148.5 degrees with a torsional angle (O(22)-Ru(2)-O(1)-Ru(1)-O(12)) of 22.7 degrees and there is a short Ru-O bridge distance of 1.843 Å. 1 undergoes a chemically reversible one-electron, pH-independent oxidation at 0.73 V vs NHE (0.49 V vs SCE) from pH = 4-8 and a pH-dependent, two-electron, chemically irreversible reduction at -0.35 V below pH = 4.0. Addition of 1.8H(2)O to strong acid generates [(tpy)(H(2)O)(2)Ru(III)ORu(III)(H(2)O)(2)(tpy)](4+) (2), which has been characterized by UV-visible, resonance Raman, and (1)H NMR measurements. In pH-dependent cyclic voltammograms there is evidence for a series of redox couples interrelating oxidation states from Ru(II)ORu(II) to Ru(V)ORu(V). In contrast to the "blue dimer", cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+), oxidation state Ru(IV)ORu(IV) (Ru(V)ORu(III)?) does appear as a stable oxidation state. Oxidation of Ru(IV)ORu(IV) by Ce(IV) in 0.1 M HClO(4) is followed by rapid O(2) production and appearance of an anated form of Ru(IV)ORu(IV). O(2) formation is in competition with oxidative cleavage of Ru(V)ORu(V) by Ce(IV) to give [Ru(VI)(tpy)(O)(2)(OH(2))](2+). Anation and oxidative cleavage prevent this complex from being a true catalyst for water oxidation. |
---|---|
ISSN: | 1520-510X |
DOI: | 10.1021/ic970908z |