Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress
In natural environments, drought often occurs in surface soil while water is available for plant uptake deeper in the soil profile. The objective of the study was to examine the involvement of antioxidant metabolism and lipid peroxidation in the responses of two cool-season grasses to surface soil d...
Gespeichert in:
Veröffentlicht in: | Environmental and experimental botany 2001-04, Vol.45 (2), p.105-114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In natural environments, drought often occurs in surface soil while water is available for plant uptake deeper in the soil profile. The objective of the study was to examine the involvement of antioxidant metabolism and lipid peroxidation in the responses of two cool-season grasses to surface soil drying. Kentucky bluegrass (
Poa pratensis L) and tall fescue (
Festuca arundinacea Schreb.) were grown in split tubes, consisting of two sections (each 10 cm in diameter and 20 cm long). Grasses were subjected to three soil moisture regimes: (a) well-watered control: whole soil profile was watered; (b) surface drying: surface 20 cm of soil was dried by withholding irrigation and the lower 20 cm of soil was watered; (c) full drying: whole soil profile was dried. Surface drying had no effects on relative water content (RWC) and chlorophyll content (Chl) for both grasses and only slightly reduced shoot growth for tall fescue. Superoxide dismutase (SOD) activity increased, while catalase (CAT) and peroxidase (POD) activities remained unchanged during most periods of surface drying. Malondialdehyde (MDA) content was unaffected by surface drying for tall fescue, but increased initially and then decreased to the control level for Kentucky bluegrass. Under full drying, RWC, Chl content, and shoot dry weight decreased, but MDA content increased in both grasses; SOD and POD activities initially increased transiently and then decreased; CAT remained unchanged for 25 days and then decreased. These results suggested that both Kentucky bluegrass and tall fescue were capable of surviving surface soil drying. This capability could be related to increases in antioxidant activities, particularly SOD and CAT. However, full drying suppressed antioxidant activities and induced lipid peroxidation. |
---|---|
ISSN: | 0098-8472 1873-7307 |
DOI: | 10.1016/S0098-8472(00)00084-8 |