Functionalized Polymers-Emerging Versatile Tools for Solution-Phase Chemistry and Automated Parallel Synthesis
As part of the dramatic changes associated with the need for preparing compound libraries in pharmaceutical and agrochemical research laboratories, industry searches for new technologies that allow for the automation of synthetic processes. Since the pioneering work by Merrifield polymeric supports...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2001-02, Vol.40 (4), p.650-679 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As part of the dramatic changes associated with the need for preparing compound libraries in pharmaceutical and agrochemical research laboratories, industry searches for new technologies that allow for the automation of synthetic processes. Since the pioneering work by Merrifield polymeric supports have been identified to play a key role in this field however, polymer‐assisted solution‐phase synthesis which utilizes immobilized reagents and catalysts has only recently begun to flourish. Polymer‐assisted solution‐phase synthesis has various advantages over conventional solution‐phase chemistry, such as the ease of separation of the supported species from a reaction mixture by filtration and washing, the opportunity to use an excess of the reagent to force the reaction to completion without causing workup problems, and the adaptability to continuous‐flow processes. Various strategies for employing functionalized polymers stoichiometrically have been developed. Apart from reagents that are covalently or ionically attached to the polymeric backbone and which are released into solution in the presence of a suitable substrate, scavenger reagents play an increasingly important role in purifying reaction mixtures. Employing functionalized polymers in solution‐phase synthesis has been shown to be extremely useful in automated parallel synthesis and multistep sequences. So far, compound libraries containing as many as 88 members have been generated by using several polymer‐bound reagents one after another. Furthermore, it has been demonstrated that complex natural products like the alkaloids (±)‐oxomaritidine and (±)‐epimaritidine can be prepared by a sequence of five and six consecutive polymer‐assisted steps, respectively, and the potent analgesic compound (±)‐epibatidine in twelve linear steps ten of which are based on functionalized polymers. These developments reveal the great future prospects of polymer‐assisted solution‐phase synthesis.
A bright future for automated synthesis in solution: Functionalized polymers (see picture) have emerged as versatile synthetic tools for transforming reactants or removing by‐products and impurities from solution, and have been employed successfully in multistep syntheses without the need for any further purification steps. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/1521-3773(20010216)40:4<650::AID-ANIE6500>3.0.CO;2-C |