Bile Salt Anion Sorption by Polymeric Resins: Comparison of a Functionalized Polyacrylamide Resin with Cholestyramine

Cholestyramine and a cross-linked polyacrylamide resin with lateral alkyl quaternary ammonium groups (QPDA12) were used to study their ability to bind several bile salt anions (including the cholate, glycocholate, taurocholate, and chenodeoxycholate), individually and competitively, from phosphate b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2000-12, Vol.232 (2), p.282-288
Hauptverfasser: Zhu, X.X., Brizard, F., Piché, J., Yim, C.T., Brown, G.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cholestyramine and a cross-linked polyacrylamide resin with lateral alkyl quaternary ammonium groups (QPDA12) were used to study their ability to bind several bile salt anions (including the cholate, glycocholate, taurocholate, and chenodeoxycholate), individually and competitively, from phosphate buffer solutions at room temperature. The latter resin showed high affinities for all the bile salt anions examined, while cholestyramine exhibited a high affinity only for the more hydrophobic chenodeoxycholate. However, for the binding with cholestyramine, cooperative effects were more pronounced, leading to the enhancement of sorption at higher concentrations. The Langmuir equation and its modified versions were used in the interpretation of both individual and competitive binding of bile salts. The data from competitive binding studies indicated that the presence of the tightly bound chenodeoxycholate did not significantly diminish the ability of QPDA12 resin to bind cholate. However, for cholestyramine, the sorption of chenodeoxycholate increased the relative binding affinity for the more hydrophilic cholate, revealing a novel “cooperative” effect involving different bile salt anions. The latter results suggest that the observed higher affinity of QPDA12 is brought about predominantly through the hydrophobic interactions with the pendant alkyl groups rather than with the resin backbone.
ISSN:0021-9797
1095-7103
DOI:10.1006/jcis.2000.7157