Power law distributions of burst duration and interburst interval in the solar wind: turbulence or dissipative self-organized criticality?

We calculate the probability density functions P of burst energy e, duration T, and interburst interval tau for a known turbulent system in nature. Bursts in the Earth-Sun component of the Poynting flux at 1 AU in the solar wind were measured using the MFI and SWE experiments on the NASA WIND spacec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-12, Vol.62 (6 Pt B), p.8794-8797
Hauptverfasser: Freeman, MP, Watkins, NW, Riley, DJ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the probability density functions P of burst energy e, duration T, and interburst interval tau for a known turbulent system in nature. Bursts in the Earth-Sun component of the Poynting flux at 1 AU in the solar wind were measured using the MFI and SWE experiments on the NASA WIND spacecraft. We find P(e) and P(T) to be power laws, consistent with self-organized criticality (SOC). We find also a power-law form for P(tau) that distinguishes this turbulent cascade from the exponential P(tau) of ideal SOC, but not from some other SOC-like sandpile models. We discuss the implications for the relation between SOC and turbulence.
ISSN:1063-651X
1095-3787
DOI:10.1103/physreve.62.8794