Tricritical behavior in deterministic aperiodic ising systems

We use a mixed-spin model, with aperiodic ferromagnetic exchange interactions and crystalline fields, to investigate the effects of deterministic geometric fluctuations on first-order transitions and tricritical phenomena. The interactions and the crystal-field parameters are distributed according t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-12, Vol.62 (6 Pt A), p.7773-7777
Hauptverfasser: Haddad, TA, Ghosh, A, Salinas, SR
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use a mixed-spin model, with aperiodic ferromagnetic exchange interactions and crystalline fields, to investigate the effects of deterministic geometric fluctuations on first-order transitions and tricritical phenomena. The interactions and the crystal-field parameters are distributed according to some two-letter substitution rules. From a Migdal-Kadanoff real-space renormalization-group calculation, which turns out to be exact on a suitable hierarchical lattice, we show that the effects of aperiodicity are qualitatively similar for tricritical and simple critical behavior. In particular, the fixed point associated with tricritical behavior becomes fully unstable beyond a certain threshold dimension (which depends on the aperiodicity), and is replaced by a two-cycle that controls a weakened and temperature-depressed tricritical singularity.
ISSN:1063-651X
1095-3787
DOI:10.1103/PhysRevE.62.7773