A rapid technique to determine the internal area function of finite-length ducts using maximum length sequence analysis

This paper describes a rapid technique for reconstruction of the internal area function of a duct using blockage-induced eigenvalue shifts determined from eigenfrequencies measured under two sets of duct termination boundary conditions. A single broad band maximum length sequence (MLS) measurement o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2000-07, Vol.108 (1), p.44-52
Hauptverfasser: de Salis MH, Oldham, DJ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a rapid technique for reconstruction of the internal area function of a duct using blockage-induced eigenvalue shifts determined from eigenfrequencies measured under two sets of duct termination boundary conditions. A single broad band maximum length sequence (MLS) measurement of short duration is utilized to obtain the transfer function of the duct, which in turn can be utilized to determine its eigenvalue shifts and subsequently its internal area function using an inverse perturbation technique. The reconstruction results display the same order of accuracy as those obtained previously using swept sine measurements of extended duration. An expression for the determination of the area function is presented utilizing resonant frequency information alone, thus rendering duct length determination unnecessary. A computational routine further simplifies the process such that the accuracy of the technique could be ascertained for a range of configurations including longer ducts and ducts that initially have nonuniform internal cross section over their length. Development of a relationship between obstacle length and wavelength of the lowest eigenfrequency required for successful reconstruction is also described. This is an important result for longer ducts where measurement of lower eigenfrequencies may present problems using standard measurement equipment.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.429528