Voltammetry as a Tool for Monitoring Micellar Structural Evolution?
Self-assembled systems such as micelles and liquid crystals are currently of interest as templates for the controlled formation of nanoscale structures. Knowledge of the mesophase structure, structural evolution, and interparticle interaction is of great importance in understanding the behavior of s...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2000-02, Vol.72 (4), p.687-695 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-assembled systems such as micelles and liquid crystals are currently of interest as templates for the controlled formation of nanoscale structures. Knowledge of the mesophase structure, structural evolution, and interparticle interaction is of great importance in understanding the behavior of such systems especially for applications such as nanoreactors. Here, we compare the use of cyclic voltammetry, chronoamperometry, and the rotating disk electrode (RDE) for the determination of micellar hydrodynamic radii and show that only the steady-state RDE yields values directly comparable with nonelectrochemical techniques. The RDE is applied for the determination of cetyltrimethylammonium chloride micellar structure and observing micellar structural evolution as well as evaluating the usual intermicellar interactions. The results clearly show (a) the collapse of the micellar shear plane toward the hard-sphere surface with increasing electrolyte concentration, (b) the electrolyte-dependent spherical expansion of the micellar hard-spheres due to increasing aggregation (N) number, (c) the structural transition from spherical to rodlike micelles, and (d) micellar elongation. As well as structural evolution, the evolutionary changes in interaction processes are also observed, i.e. the transition from Coulombic interactions to excluded volume interaction. This paper describes in detail the voltammetric measurement of these processes and explicates the necessary experimental conditions for successful observation of micellar structural evolution. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac990354c |