The Effect of Elevated Concentrations of Fructose 2,6-Bisphosphate on Carbon Metabolism during Deacidification in the Crassulacean Acid Metabolism Plant Kalanchöe daigremontiana

In C3 plants, the metabolite fructose 2,6-bisphosphate (Fru 2,6-P2) has an important role in the regulation of carbon partitioning during photosynthesis. To investigate the impact of Fru 2,6-P2 on carbon metabolism during Crassulacean acid metabolism (CAM), we have developed an Agrobacterium tumefac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1999-11, Vol.121 (3), p.957-964
Hauptverfasser: Mark R. Truesdale, Otto Toldi, Scott, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In C3 plants, the metabolite fructose 2,6-bisphosphate (Fru 2,6-P2) has an important role in the regulation of carbon partitioning during photosynthesis. To investigate the impact of Fru 2,6-P2 on carbon metabolism during Crassulacean acid metabolism (CAM), we have developed an Agrobacterium tumefaciens-mediated transformation system in order to alter genetically the obligate CAM plant Kalanchöe daigremontiana. To our knowledge, this is the first report to use genetic manipulation of a CAM species to increase our understanding of this important form of plant metabolism. Transgenic plants were generated containing a modified rat liver 6-phosphofructo-2-kinase gene. In the plants analyzed the activity of 6-phosphofructo-2-kinase ranged from 175% to 198% of that observed in wild-type plants, resulting in Fru 2,6-P2 concentrations that were 228% to 350% of wild-type plants after 2 h of illumination. A range of metabolic measurements were made on these transgenic plants to investigate the possible roles of Fru 2,6-P2 during Suc, starch, and malic acid metabolism across the deacidification period of CAM. The results suggest that Fru 2,6-P2 plays a major role in regulating partitioning between Suc and starch synthesis during photosynthesis. However, alterations in Fru 2,6-P2 levels had little effect on malate mobilization during CAM fluxes.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.121.3.957