Effects of pH on Dielectric Relaxation of Montmorillonite, Allophane, and Imogolite Suspensions

Dielectric measurements were performed on montmorillonite, allophane, and imogolite suspensions under various pH conditions, using time domain reflectometry over the frequency range 10 kHz–20 GHz. A dielectric relaxation peak due to bound water could be observed for all the clays. Allophane has two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Colloid and Interface Science 1999-04, Vol.212 (1), p.152-161
Hauptverfasser: Ishida, Tomoyuki, Makino, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dielectric measurements were performed on montmorillonite, allophane, and imogolite suspensions under various pH conditions, using time domain reflectometry over the frequency range 10 kHz–20 GHz. A dielectric relaxation peak due to bound water could be observed for all the clays. Allophane has two peaks, indicating that its peaks are very similar to those of silica–alumina gels. Although imogolite has a similar chemical composition, only one peak was found. The relaxation strength of montmorillonite is greater than that of the other two clays. For all the clays, the relaxation strength depended on the pH. A change in the relaxation strength according to a change in pH is explained in terms of the different network structures of the clay particles. It is suggested that bound water influences the network structure formation. In montmorillonite, a great relaxation process detected at low frequency is caused by surface polarization of counterions. The change in measure of the structural unit with the pH, identified from Schwartz's theory, has a tendency similar to that postulated by other experimental techniques, and surface charge densities identified are close to those estimated from CEC.
ISSN:0021-9797
1095-7103
DOI:10.1006/jcis.1998.6030