Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation

We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. Lett.; (United States) 1987-12, Vol.59 (26), p.2911-2914
Hauptverfasser: DOERING, C. R, GIBBON, J. D, HOLM, D. D, NICOLAENKO, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2914
container_issue 26
container_start_page 2911
container_title Phys. Rev. Lett.; (United States)
container_volume 59
creator DOERING, C. R
GIBBON, J. D
HOLM, D. D
NICOLAENKO, B
description We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.
doi_str_mv 10.1103/PhysRevLett.59.2911
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859295195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859295195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</originalsourceid><addsrcrecordid>eNpNkEGLFDEQhYMo7rj6CwQJ4sFLj5XOpDs5yrKuQoMiehNCJql2It3JbJIedvz1ZphB9lBUwfveK3iEvGawZgz4h2-7Y_6OhwFLWQu1bhVjT8iKQa-anrHNU7IC4KxRAP0VeZHzHwBgbSefkytWFdFJsSK_bh-MLXQ4mv0S4oE6P2PIPgYaR1p2SJfgD5iymagpJVU2JjrWOWk2zvsJH-idD3-3S_rdDCY4s1C8X0ypGS_Js9FMGV9d9jX5-en2x83nZvh69-Xm49BYLlRphGQWjMQW3EZIBLm1rIWeA3ZmBGs20lqlnOWsB2dah2wc6-2w2zrZYs-vydtzbszF62x9QbuzMQS0RYuOK6lkhd6foX2K9wvmomefLU6TCRiXrJkUqlWCKVFRfkZtijknHPU--dmko2agT93rR91rofSp--p6c3mwbGd0jzznsivw7gKYbM00JhOsz_-5HnrBueT_AGQrkIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859295195</pqid></control><display><type>article</type><title>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</title><source>American Physical Society Journals</source><creator>DOERING, C. R ; GIBBON, J. D ; HOLM, D. D ; NICOLAENKO, B</creator><creatorcontrib>DOERING, C. R ; GIBBON, J. D ; HOLM, D. D ; NICOLAENKO, B ; Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><description>We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.59.2911</identifier><identifier>PMID: 10035685</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>657000 - Theoretical &amp; Mathematical Physics ; ANALYTICAL SOLUTION ; Applied sciences ; BOUNDARY CONDITIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DEGREES OF FREEDOM ; DIFFERENTIAL EQUATIONS ; DYNAMICS ; EQUATIONS ; Exact sciences and technology ; LYAPUNOV METHOD ; MECHANICS ; Other techniques and industries ; PARTIAL DIFFERENTIAL EQUATIONS ; TURBULENCE</subject><ispartof>Phys. Rev. Lett.; (United States), 1987-12, Vol.59 (26), p.2911-2914</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</citedby><cites>FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7075338$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10035685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5639898$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>DOERING, C. R</creatorcontrib><creatorcontrib>GIBBON, J. D</creatorcontrib><creatorcontrib>HOLM, D. D</creatorcontrib><creatorcontrib>NICOLAENKO, B</creatorcontrib><creatorcontrib>Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><title>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</title><title>Phys. Rev. Lett.; (United States)</title><addtitle>Phys Rev Lett</addtitle><description>We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.</description><subject>657000 - Theoretical &amp; Mathematical Physics</subject><subject>ANALYTICAL SOLUTION</subject><subject>Applied sciences</subject><subject>BOUNDARY CONDITIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DEGREES OF FREEDOM</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DYNAMICS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>LYAPUNOV METHOD</subject><subject>MECHANICS</subject><subject>Other techniques and industries</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>TURBULENCE</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpNkEGLFDEQhYMo7rj6CwQJ4sFLj5XOpDs5yrKuQoMiehNCJql2It3JbJIedvz1ZphB9lBUwfveK3iEvGawZgz4h2-7Y_6OhwFLWQu1bhVjT8iKQa-anrHNU7IC4KxRAP0VeZHzHwBgbSefkytWFdFJsSK_bh-MLXQ4mv0S4oE6P2PIPgYaR1p2SJfgD5iymagpJVU2JjrWOWk2zvsJH-idD3-3S_rdDCY4s1C8X0ypGS_Js9FMGV9d9jX5-en2x83nZvh69-Xm49BYLlRphGQWjMQW3EZIBLm1rIWeA3ZmBGs20lqlnOWsB2dah2wc6-2w2zrZYs-vydtzbszF62x9QbuzMQS0RYuOK6lkhd6foX2K9wvmomefLU6TCRiXrJkUqlWCKVFRfkZtijknHPU--dmko2agT93rR91rofSp--p6c3mwbGd0jzznsivw7gKYbM00JhOsz_-5HnrBueT_AGQrkIw</recordid><startdate>19871228</startdate><enddate>19871228</enddate><creator>DOERING, C. R</creator><creator>GIBBON, J. D</creator><creator>HOLM, D. D</creator><creator>NICOLAENKO, B</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19871228</creationdate><title>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</title><author>DOERING, C. R ; GIBBON, J. D ; HOLM, D. D ; NICOLAENKO, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>657000 - Theoretical &amp; Mathematical Physics</topic><topic>ANALYTICAL SOLUTION</topic><topic>Applied sciences</topic><topic>BOUNDARY CONDITIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DEGREES OF FREEDOM</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DYNAMICS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>LYAPUNOV METHOD</topic><topic>MECHANICS</topic><topic>Other techniques and industries</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>TURBULENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOERING, C. R</creatorcontrib><creatorcontrib>GIBBON, J. D</creatorcontrib><creatorcontrib>HOLM, D. D</creatorcontrib><creatorcontrib>NICOLAENKO, B</creatorcontrib><creatorcontrib>Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Lett.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOERING, C. R</au><au>GIBBON, J. D</au><au>HOLM, D. D</au><au>NICOLAENKO, B</au><aucorp>Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</atitle><jtitle>Phys. Rev. Lett.; (United States)</jtitle><addtitle>Phys Rev Lett</addtitle><date>1987-12-28</date><risdate>1987</risdate><volume>59</volume><issue>26</issue><spage>2911</spage><epage>2914</epage><pages>2911-2914</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10035685</pmid><doi>10.1103/PhysRevLett.59.2911</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Phys. Rev. Lett.; (United States), 1987-12, Vol.59 (26), p.2911-2914
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1859295195
source American Physical Society Journals
subjects 657000 - Theoretical & Mathematical Physics
ANALYTICAL SOLUTION
Applied sciences
BOUNDARY CONDITIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DEGREES OF FREEDOM
DIFFERENTIAL EQUATIONS
DYNAMICS
EQUATIONS
Exact sciences and technology
LYAPUNOV METHOD
MECHANICS
Other techniques and industries
PARTIAL DIFFERENTIAL EQUATIONS
TURBULENCE
title Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Lyapunov%20dimension%20of%20the%20universal%20attractor%20for%20the%20complex%20Ginzburg-Landau%20equation&rft.jtitle=Phys.%20Rev.%20Lett.;%20(United%20States)&rft.au=DOERING,%20C.%20R&rft.aucorp=Center%20for%20Nonlinear%20Studies%20and%20Theoretical%20Division,%20Los%20Alamos%20National%20Laboratory,%20Los%20Alamos,%20New%20Mexico%2087545&rft.date=1987-12-28&rft.volume=59&rft.issue=26&rft.spage=2911&rft.epage=2914&rft.pages=2911-2914&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.59.2911&rft_dat=%3Cproquest_osti_%3E1859295195%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859295195&rft_id=info:pmid/10035685&rfr_iscdi=true