Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation
We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact e...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. Lett.; (United States) 1987-12, Vol.59 (26), p.2911-2914 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2914 |
---|---|
container_issue | 26 |
container_start_page | 2911 |
container_title | Phys. Rev. Lett.; (United States) |
container_volume | 59 |
creator | DOERING, C. R GIBBON, J. D HOLM, D. D NICOLAENKO, B |
description | We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument. |
doi_str_mv | 10.1103/PhysRevLett.59.2911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859295195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859295195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</originalsourceid><addsrcrecordid>eNpNkEGLFDEQhYMo7rj6CwQJ4sFLj5XOpDs5yrKuQoMiehNCJql2It3JbJIedvz1ZphB9lBUwfveK3iEvGawZgz4h2-7Y_6OhwFLWQu1bhVjT8iKQa-anrHNU7IC4KxRAP0VeZHzHwBgbSefkytWFdFJsSK_bh-MLXQ4mv0S4oE6P2PIPgYaR1p2SJfgD5iymagpJVU2JjrWOWk2zvsJH-idD3-3S_rdDCY4s1C8X0ypGS_Js9FMGV9d9jX5-en2x83nZvh69-Xm49BYLlRphGQWjMQW3EZIBLm1rIWeA3ZmBGs20lqlnOWsB2dah2wc6-2w2zrZYs-vydtzbszF62x9QbuzMQS0RYuOK6lkhd6foX2K9wvmomefLU6TCRiXrJkUqlWCKVFRfkZtijknHPU--dmko2agT93rR91rofSp--p6c3mwbGd0jzznsivw7gKYbM00JhOsz_-5HnrBueT_AGQrkIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859295195</pqid></control><display><type>article</type><title>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</title><source>American Physical Society Journals</source><creator>DOERING, C. R ; GIBBON, J. D ; HOLM, D. D ; NICOLAENKO, B</creator><creatorcontrib>DOERING, C. R ; GIBBON, J. D ; HOLM, D. D ; NICOLAENKO, B ; Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><description>We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.59.2911</identifier><identifier>PMID: 10035685</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>657000 - Theoretical & Mathematical Physics ; ANALYTICAL SOLUTION ; Applied sciences ; BOUNDARY CONDITIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DEGREES OF FREEDOM ; DIFFERENTIAL EQUATIONS ; DYNAMICS ; EQUATIONS ; Exact sciences and technology ; LYAPUNOV METHOD ; MECHANICS ; Other techniques and industries ; PARTIAL DIFFERENTIAL EQUATIONS ; TURBULENCE</subject><ispartof>Phys. Rev. Lett.; (United States), 1987-12, Vol.59 (26), p.2911-2914</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</citedby><cites>FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7075338$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10035685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5639898$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>DOERING, C. R</creatorcontrib><creatorcontrib>GIBBON, J. D</creatorcontrib><creatorcontrib>HOLM, D. D</creatorcontrib><creatorcontrib>NICOLAENKO, B</creatorcontrib><creatorcontrib>Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><title>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</title><title>Phys. Rev. Lett.; (United States)</title><addtitle>Phys Rev Lett</addtitle><description>We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.</description><subject>657000 - Theoretical & Mathematical Physics</subject><subject>ANALYTICAL SOLUTION</subject><subject>Applied sciences</subject><subject>BOUNDARY CONDITIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DEGREES OF FREEDOM</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DYNAMICS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>LYAPUNOV METHOD</subject><subject>MECHANICS</subject><subject>Other techniques and industries</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>TURBULENCE</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpNkEGLFDEQhYMo7rj6CwQJ4sFLj5XOpDs5yrKuQoMiehNCJql2It3JbJIedvz1ZphB9lBUwfveK3iEvGawZgz4h2-7Y_6OhwFLWQu1bhVjT8iKQa-anrHNU7IC4KxRAP0VeZHzHwBgbSefkytWFdFJsSK_bh-MLXQ4mv0S4oE6P2PIPgYaR1p2SJfgD5iymagpJVU2JjrWOWk2zvsJH-idD3-3S_rdDCY4s1C8X0ypGS_Js9FMGV9d9jX5-en2x83nZvh69-Xm49BYLlRphGQWjMQW3EZIBLm1rIWeA3ZmBGs20lqlnOWsB2dah2wc6-2w2zrZYs-vydtzbszF62x9QbuzMQS0RYuOK6lkhd6foX2K9wvmomefLU6TCRiXrJkUqlWCKVFRfkZtijknHPU--dmko2agT93rR91rofSp--p6c3mwbGd0jzznsivw7gKYbM00JhOsz_-5HnrBueT_AGQrkIw</recordid><startdate>19871228</startdate><enddate>19871228</enddate><creator>DOERING, C. R</creator><creator>GIBBON, J. D</creator><creator>HOLM, D. D</creator><creator>NICOLAENKO, B</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19871228</creationdate><title>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</title><author>DOERING, C. R ; GIBBON, J. D ; HOLM, D. D ; NICOLAENKO, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-581c0a8e20d458e08bc120730e6af0ca48cc99dc3170da2de1ff317de6bd82e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>657000 - Theoretical & Mathematical Physics</topic><topic>ANALYTICAL SOLUTION</topic><topic>Applied sciences</topic><topic>BOUNDARY CONDITIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DEGREES OF FREEDOM</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DYNAMICS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>LYAPUNOV METHOD</topic><topic>MECHANICS</topic><topic>Other techniques and industries</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>TURBULENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOERING, C. R</creatorcontrib><creatorcontrib>GIBBON, J. D</creatorcontrib><creatorcontrib>HOLM, D. D</creatorcontrib><creatorcontrib>NICOLAENKO, B</creatorcontrib><creatorcontrib>Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Lett.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOERING, C. R</au><au>GIBBON, J. D</au><au>HOLM, D. D</au><au>NICOLAENKO, B</au><aucorp>Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation</atitle><jtitle>Phys. Rev. Lett.; (United States)</jtitle><addtitle>Phys Rev Lett</addtitle><date>1987-12-28</date><risdate>1987</risdate><volume>59</volume><issue>26</issue><spage>2911</spage><epage>2914</epage><pages>2911-2914</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10035685</pmid><doi>10.1103/PhysRevLett.59.2911</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Phys. Rev. Lett.; (United States), 1987-12, Vol.59 (26), p.2911-2914 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859295195 |
source | American Physical Society Journals |
subjects | 657000 - Theoretical & Mathematical Physics ANALYTICAL SOLUTION Applied sciences BOUNDARY CONDITIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DEGREES OF FREEDOM DIFFERENTIAL EQUATIONS DYNAMICS EQUATIONS Exact sciences and technology LYAPUNOV METHOD MECHANICS Other techniques and industries PARTIAL DIFFERENTIAL EQUATIONS TURBULENCE |
title | Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Lyapunov%20dimension%20of%20the%20universal%20attractor%20for%20the%20complex%20Ginzburg-Landau%20equation&rft.jtitle=Phys.%20Rev.%20Lett.;%20(United%20States)&rft.au=DOERING,%20C.%20R&rft.aucorp=Center%20for%20Nonlinear%20Studies%20and%20Theoretical%20Division,%20Los%20Alamos%20National%20Laboratory,%20Los%20Alamos,%20New%20Mexico%2087545&rft.date=1987-12-28&rft.volume=59&rft.issue=26&rft.spage=2911&rft.epage=2914&rft.pages=2911-2914&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.59.2911&rft_dat=%3Cproquest_osti_%3E1859295195%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859295195&rft_id=info:pmid/10035685&rfr_iscdi=true |