Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation
We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact e...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. Lett.; (United States) 1987-12, Vol.59 (26), p.2911-2914 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.59.2911 |