Non-Abelian anomalies on a curved space with torsion
Using path-integral methods and /zeta/-function regularization a nonperturbative derivation of non-Abelian-covariant and consistent anomalies on a curved space with torsion is given. All terms depending on torsion, that one has in the expression of the consistent anomaly, can be eliminated by adding...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. D; (United States) 1989-05, Vol.39 (10), p.2987-2992 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using path-integral methods and /zeta/-function regularization a nonperturbative derivation of non-Abelian-covariant and consistent anomalies on a curved space with torsion is given. All terms depending on torsion, that one has in the expression of the consistent anomaly, can be eliminated by adding suitable counterterms to the Lagrangian density. In this way, the well-known result of Bardeen is recovered. The so-called ''covariant anomaly'' will be discussed too. |
---|---|
ISSN: | 0556-2821 1089-4918 |
DOI: | 10.1103/PhysRevD.39.2987 |