Instability of the disordered critical points of Dirac fermions

Recently, in an attempt to study disordered criticality in quantum Hall systems and {ital d}-wave superconductivity, it was found that two-dimensional random Dirac-fermion systems contain a line of critical points that is connected to the pure system. We use bosonization and current algebra to study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review, B: Condensed Matter B: Condensed Matter, 1996-03, Vol.53 (12), p.R7638-R7641
Hauptverfasser: de C Chamon C, Mudry, C, Wen, XG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, in an attempt to study disordered criticality in quantum Hall systems and {ital d}-wave superconductivity, it was found that two-dimensional random Dirac-fermion systems contain a line of critical points that is connected to the pure system. We use bosonization and current algebra to study properties of the critical line and calculate the exact scaling dimensions of all local operators. We find that the critical line contains an infinite number of relevant operators with negative scaling dimensions. {copyright} {ital 1996 The American Physical Society.}
ISSN:0163-1829
1095-3795
DOI:10.1103/physrevb.53.r7638