Relativistic (Dirac equation) effects in microscopic elastic scattering calculations

A simple relativistic extension of the first-order multiple scattering mechanism for the optical potential is employed within the context of a Dirac equation description of elastic nucleon-nucleus scattering. A formulation of this problem in terms of a momentum-space integral equation displaying an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. C; (United States) 1985-04, Vol.31 (4), p.1438-1463
Hauptverfasser: Hynes, MV, Picklesimer, A, Tandy, PC, Thaler, RM
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple relativistic extension of the first-order multiple scattering mechanism for the optical potential is employed within the context of a Dirac equation description of elastic nucleon-nucleus scattering. A formulation of this problem in terms of a momentum-space integral equation displaying an identifiable nonrelativistic sector is described and applied. Extensive calculations are presented for proton scattering from /sup 40/Ca and /sup 16/O at energies between 100 and 500 MeV. Effects arising from the relativistic description of the propagation of the projectile are isolated and are shown to be responsible for most of the departures from typical nonrelativistic (Schroedinger) results. Off-shell and nonlocal effects are included and these, together with uncertainties in the nuclear densities, are shown not to compromise the characteristic improvement of forward angle spin observable predictions provided by the relativistic approach. The sensitivity to ambiguities in the Lorentz scalar and vector composition of the optical potential is displayed and discussed.
ISSN:0556-2813
DOI:10.1103/physrevc.31.1438