Perception of ocean wave direction by sea turtles

At the beginning of their offshore migration, hatchling sea turtles enter the ocean at night and establish a course away from land by swimming directly into oceanic waves. How turtles can detect wave direction while swimming under water in darkness, however, has not been explained. Objects in a wate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 1995-05, Vol.198 (Pt 5), p.1079-1085
Hauptverfasser: Lohmann, K, Swartz, A, Lohmann, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At the beginning of their offshore migration, hatchling sea turtles enter the ocean at night and establish a course away from land by swimming directly into oceanic waves. How turtles can detect wave direction while swimming under water in darkness, however, has not been explained. Objects in a water column beneath the surface of the ocean describe a circular movement as waves pass above. In principle, swimming turtles might, therefore, detect wave direction by monitoring the sequence of accelerations they experience under water. To determine whether loggerhead (Caretta caretta L.) and green turtle (Chelonia mydas L.) hatchlings can detect wave direction in this way, we constructed a wave motion simulator to reproduce in air the circular movements that occur beneath small ocean waves. Hatchlings suspended in air and subjected to movements that simulated waves approaching from their right sides attempted to turn right, whereas movements that simulated waves from the left elicited left-turning behavior. Movements simulating waves from directly in front of the turtles elicited little turning in either direction. The results demonstrate that hatchling sea turtles can determine the propagation direction of ocean waves by monitoring the circular movements that occur as waves pass above. Although sea turtles are the first animals shown to be capable of detecting wave direction in this way, such an orientation mechanism may be widespread among other transoceanic migrants such as fish and cetaceans.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.198.5.1079