Nanofabrication of Small Copper Clusters on Gold(111) Electrodes by a Scanning Tunneling Microscope

The use of scanning tunneling microscopy in an electrochemical environment as a tool for the nanoscale modification of gold electrodes was demonstrated. Small copper clusters, typically two to four atomic layers in height, were precisely positioned on a gold(111) electrode by a process in which copp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1997-02, Vol.275 (5303), p.1097-1099
Hauptverfasser: Kolb, D. M., Ullmann, R., Will, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of scanning tunneling microscopy in an electrochemical environment as a tool for the nanoscale modification of gold electrodes was demonstrated. Small copper clusters, typically two to four atomic layers in height, were precisely positioned on a gold(111) electrode by a process in which copper was first deposited onto the tip of the scanning tunneling microscope, which then acted as a reservoir from which copper could be transferred to the surface during an appropriate approach of the tip to the surface. Tip approach and position were controlled externally by a microprocessor unit, allowing the fabrication of various patterns, cluster arrays, and "conducting wires" in a very flexible and convenient manner.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.275.5303.1097