Formation of Nickel Clusters Wrapped in Carbon Cages: Toward New Endohedral Metallofullerene Synthesis

Despite the high potential of endohedral metallofullerenes (EMFs) for application in biology, medicine and molecular electronics, and recent efforts in EMF synthesis, the variety of EMFs accessible by conventional synthetic methods remains limited and does not include, for example, EMFs of late tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-02, Vol.17 (2), p.1082-1089
Hauptverfasser: Sinitsa, Alexander S, Chamberlain, Thomas W, Zoberbier, Thilo, Lebedeva, Irina V, Popov, Andrey M, Knizhnik, Andrey A, McSweeney, Robert L, Biskupek, Johannes, Kaiser, Ute, Khlobystov, Andrei N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the high potential of endohedral metallofullerenes (EMFs) for application in biology, medicine and molecular electronics, and recent efforts in EMF synthesis, the variety of EMFs accessible by conventional synthetic methods remains limited and does not include, for example, EMFs of late transition metals. We propose a method in which EMF formation is initiated by electron irradiation in aberration-corrected high-resolution transmission electron spectroscopy (AC-HRTEM) of a metal cluster surrounded by amorphous carbon inside a carbon nanotube serving as a nanoreactor and apply this method for synthesis of nickel EMFs. The use of AC-HRTEM makes it possible not only to synthesize new, previously unattainable nanoobjects but also to study in situ the mechanism of structural transformations. Molecular dynamics simulations using the state-of-the-art approach for modeling the effect of electron irradiation are performed to rationalize the experimental observations and to link the observed processes with conditions of bulk EMF synthesis.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.6b04607