Regulation of Osteoblast, Chondrocyte, and Osteoclast Functions by Fibroblast Growth Factor (FGF)-18 in Comparison with FGF-2 and FGF-10
This study investigated the actions of fibroblast growth factor (FGF)-18, a novel member of the FGF family, on osteoblasts, chondrocytes, and osteoclasts and compared them with those of FGF-2 and FGF-10. FGF-18 stimulated the proliferation of cultured mouse primary osteoblasts, osteoblastic MC3T3-E1...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-03, Vol.277 (9), p.7493-7500 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the actions of fibroblast growth factor (FGF)-18, a novel member of the FGF family, on osteoblasts, chondrocytes, and osteoclasts and compared them with those of FGF-2 and FGF-10. FGF-18 stimulated the proliferation of cultured mouse primary osteoblasts, osteoblastic MC3T3-E1 cells, primary chondrocytes, and prechondrocytic ATDC5 cells, although it inhibited the differentiation and matrix synthesis of these cells. FGF-18 up-regulated the phosphorylation of extracellular signal-regulated kinase in both osteoblasts and chondrocytes and up-regulated the phosphorylation of p38 mitogen-activated protein kinase only in chondrocytes. FGF-18 mitogenic actions were blocked by a specific inhibitor of extracellular signal-regulated kinase in both osteoblasts and chondrocytes and by a specific inhibitor of p38 mitogen-activated protein kinase in chondrocytes. With regard to the action of FGF-18 on bone resorption, FGF-18 not only induced osteoclast formation through receptor activator of nuclear factor-κB ligand and cyclooxygenase-2 but also stimulated osteoclast function to form resorbed pits on a dentine slice in the mouse coculture system. All these effects of FGF-18 bore a close resemblance to those of FGF-2, whereas FGF-10 affects none of these cells. FGF-18 may therefore compensate for the action of FGF-2 on bone and cartilage. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M108653200 |