Corn Silk Extract and Its Bioactive Peptide Ameliorated Lipopolysaccharide-Induced Inflammation in Mice via the Nuclear Factor-κB Signaling Pathway

Bioactive peptides derived from foods have shown beneficial anti-inflammatory potential. Inhibitory κB kinase-β (IKKβ) plays a crucial role in the activation of nuclear factor-κB (NF-κB), a transcription factor involved in inflammation. Here we applied proteomic and bioinformatics approaches to iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2017-02, Vol.65 (4), p.759-768
Hauptverfasser: Ho, Tin-Yun, Li, Chia-Cheng, Lo, Hsin-Yi, Chen, Feng-Yuan, Hsiang, Chien-Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioactive peptides derived from foods have shown beneficial anti-inflammatory potential. Inhibitory κB kinase-β (IKKβ) plays a crucial role in the activation of nuclear factor-κB (NF-κB), a transcription factor involved in inflammation. Here we applied proteomic and bioinformatics approaches to identify anti-inflammatory peptides that target IKKβ from corn silk. Corn silk extract significantly suppressed lipopolysaccharide (LPS)-induced NF-κB activities [(1.7 ± 0.2)-fold vs (3.0 ± 0.6)-fold, p < 0.05] in cells. Trypsin hydrolysate of corn silk also suppressed LPS-induced NF-κB activities [(1.1 ± 0.3)-fold vs 3.3 ± 0.5 fold, p < 0.01]. In addition, both corn silk extract and trypsin hydrolysate significantly inhibited LPS-induced interleukin-1β (IL-1β) production by 58.3 ± 4.5 and 55.1 ± 7.4%, respectively. A novel peptide, FK2, docked into the ATP-binding pocket of IKKβ, was further identified from trypsin hydrolysis of corn silk. FK2 inhibited IKKβ activities, IκB phosphorylation, and subsequent NF-κB activation [(2.3 ± 0.4)-fold vs (5.5 ± 0.4)-fold, p < 0.001]. Moreover, FK2 significantly reduced NF-κB-driven luminescent signals in organs by 5–11-fold and suppressed LPS-induced NF-κB activities and IL-β production in tissues. In conclusion, our findings indicated that corn silk displayed anti-inflammatory abilities. In addition, we first identified an anti-inflammatory peptide FK2 from corn silk. Moreover, the anti-inflammatory effect of FK2 might be through IKKβ–NF-κB signaling pathways.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.6b03327