Potential for Persulfate Degradation of Semi Volatile Organic Compounds Contamination

Semi Volatile Organic Compounds (SVOCs) are common contaminants found in brownfield sites that used to be agrochemical plants, chemical storage sites, and industrial areas. Chemical oxidation showed great potential to provide a rapid, cost-effective approach for SVOCs contaminate sites. Chemical oxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced Materials Research 2013, Vol.651, p.109-114
Hauptverfasser: Qiu, Zhi, Zhang, Zong Lin, Zhong, Zhong, Gu, Zhen Yu, Sun, Fu Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semi Volatile Organic Compounds (SVOCs) are common contaminants found in brownfield sites that used to be agrochemical plants, chemical storage sites, and industrial areas. Chemical oxidation showed great potential to provide a rapid, cost-effective approach for SVOCs contaminate sites. Chemical oxidation using persulfate was demonstrated by degrading both lab samples and on-site samples from a local o-ansidine contaminated site in this study. The soil samples were mixed with persulfate at different ratios, while adding supplements for the purpose of persulfate thermal activation and pH control. Experiments for optimal usage and treatment duration were also investigated to provide guidance for following demonstration project. Soil samples were analyzed before and after the treatments to compare the o-ansidine concentration changes. The results suggested an optimal ratio of persulfate at 0.5% (in w/w) for this study, with 90% or more removal of most samples in 3 days, at an average cost of oxidants per ton of soil around 800 RMB. This study demonstrated the potential of persulfate oxidation as a novel and reliable approach for o-ansidine contaminated soil, as well as the possibility of extending the remediation concept for other organic contamination scenarios. In addition, persulfate oxidation could also be combined with other remediation technology in future due to its simplicity and convenience.
ISSN:1022-6680
1662-8985
1662-8985
DOI:10.4028/www.scientific.net/AMR.651.109