Singular dissipative stochastic equations in Hilbert spaces

Existence of solutions to martingale problems corresponding to singular dissipative stochastic equations in Hilbert spaces are proved for any initial condition. The solutions for the single starting points form a conservative diffusion process whose transition semigroup is shown to be strong Feller....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2002-10, Vol.124 (2), p.261-303
Hauptverfasser: DA PRATO, Giuseppe, RÖCKNER, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existence of solutions to martingale problems corresponding to singular dissipative stochastic equations in Hilbert spaces are proved for any initial condition. The solutions for the single starting points form a conservative diffusion process whose transition semigroup is shown to be strong Feller. Uniqueness in a generalized sense is proved also, and a number of applications is presented.
ISSN:0178-8051
1432-2064
DOI:10.1007/s004400200214