Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network
In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation fi...
Gespeichert in:
Veröffentlicht in: | Chinese physics C 2016-08, Vol.40 (8), p.130-135 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 4- 0.034 to 0.953 4- 0.037 by using the new method of the ENN. The proposed n/γdiscrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection. |
---|---|
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/40/8/086204 |