CHY-graphs on a torus

A bstract Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on M 1 , n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-10, Vol.2016 (10), p.1-34, Article 116
Hauptverfasser: Cardona, Carlos, Gomez, Humberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on M 1 , n , the moduli space of n-punctured Elliptic curves. As a particular application, we study the Φ 3 bi-adjoint scalar theory. We propose a set of rules to construct integrands on M 1 , n from Φ 3 integrands on M 0 , n , the moduli space of n-punctured spheres. We illustrate these rules by computing a variety of Φ 3 one-loop Feynman diagrams. Conversely, we also provide another set of rules to compute the corresponding CHY-integrand on M 1 , n by starting instead from a given Φ 3 one-loop Feynman diagram. In addition, our results can easily be extended to higher loops.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2016)116