Revising the ages of planet-hosting stars

Aims. This article aims to measure the age of stars with planets (SWP) through stellar tracks and isochrones computed with the PAdova and TRieste Stellar Evolutionary Code (PARSEC). Methods. We developed algorithms based on two different techniques for determining the ages of field stars: isochrone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2015-03, Vol.575, p.A18
Hauptverfasser: Bonfanti, A., Ortolani, S., Piotto, G., Nascimbeni, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims. This article aims to measure the age of stars with planets (SWP) through stellar tracks and isochrones computed with the PAdova and TRieste Stellar Evolutionary Code (PARSEC). Methods. We developed algorithms based on two different techniques for determining the ages of field stars: isochrone placement and Bayesian estimation. Their application to a synthetic sample of coeval stars shows the intrinsic limits of each method. For instance, the Bayesian computation of the modal age tends to select the extreme age values in the isochrones grid. Therefore, we used the isochrone placement technique to measure the ages of 317 SWP. Results. We found that ~6% of SWP have ages lower than 0.5 Gyr. The age distribution peaks in the interval [1.5, 2) Gyr, then it decreases. However, ~7% of the stars are older than 11 Gyr. The Sun turns out to be a common star that hosts planets, when considering its evolutionary stage. Our SWP age distribution is less peaked and slightly shifted towards lower ages if compared with ages in the literature and based on the isochrone fit. In particular, there are no ages below 0.5 Gyr in the literature.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201424951