Residual stress characteristics in a non-circular drawing sequence of pearlitic steel wire

In this paper, characteristics of residual stress in pearlitic steel wire drawn by a non-circular drawing (NCD) sequence with two processing routes, NCDA and NCDB, were experimentally and numerically investigated up to the 12th pass in comparison with conventional wire drawing (WD). For experimental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals and materials international 2016-11, Vol.22 (6), p.1083-1090
Hauptverfasser: Baek, Hyun Moo, Hwang, Sun Kwang, Son, Il-Heon, Im, Yong-Taek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, characteristics of residual stress in pearlitic steel wire drawn by a non-circular drawing (NCD) sequence with two processing routes, NCDA and NCDB, were experimentally and numerically investigated up to the 12th pass in comparison with conventional wire drawing (WD). For experimental investigation of the axial residual stress at the surface of the drawn wire, destructive (deflection) and non-destructive methods were employed. According to the experimental results, axial surface residual stress of the drawn wire by the NCD sequence was lower and more homogeneous compared to the conventional WD. Based on the elasto-plastic numerical simulation results from the surface to the center of the drawn wire using a commercial DEFORM-3D, an empirical relationship between residual stress and reduction of area was determined to predict the residual stress evolution in the multi-pass WD, NCDA, and NCDB, in that order. From the results of this investigation, it can be construed that the NCD sequence, especially the NCDB, might be helpful in improving the residual stress characteristics of pearlitic steel wire to improve its mechanical behavior and service life.
ISSN:1598-9623
2005-4149
DOI:10.1007/s12540-016-6196-1