DisCo: Display-Camera Communication Using Rolling Shutter Sensors
We present DisCo, a novel display-camera communication system. DisCo enables displays and cameras to communicate with each other while also displaying and capturing images for human consumption. Messages are transmitted by temporally modulating the display brightness at high frequencies so that they...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2016-09, Vol.35 (5), p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present DisCo, a novel display-camera communication system. DisCo enables displays and cameras to communicate with each other while also displaying and capturing images for human consumption. Messages are transmitted by temporally modulating the display brightness at high frequencies so that they are imperceptible to humans. Messages are received by a rolling shutter camera that converts the temporally modulated incident light into a spatial flicker pattern. In the captured image, the flicker pattern is superimposed on the pattern shown on the display. The flicker and the display pattern are separated by capturing two images with different exposures. The proposed system performs robustly in challenging real-world situations such as occlusion, variable display size, defocus blur, perspective distortion, and camera rotation. Unlike several existing visible light communication methods, DisCo works with off-the-shelf image sensors. It is compatible with a variety of sources (including displays, single LEDs), as well as reflective surfaces illuminated with light sources. We have built hardware prototypes that demonstrate DisCo’s performance in several scenarios. Because of its robustness, speed, ease of use, and generality, DisCo can be widely deployed in several applications, such as advertising, pairing of displays with cell phones, tagging objects in stores and museums, and indoor navigation. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/2896818 |