Synthesis of Active Cell Balancing Architectures for Battery Packs

Active balancing architectures effectively increase the efficiency of large battery packs by equalizing charge between cells. For this purpose, a balancing circuit and appropriate control scheme have to be designed to enable the charge transfer via energy storage elements such as inductors. Using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2016-11, Vol.35 (11), p.1876-1889
Hauptverfasser: Lukasiewycz, Martin, Kauer, Matthias, Steinhorst, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active balancing architectures effectively increase the efficiency of large battery packs by equalizing charge between cells. For this purpose, a balancing circuit and appropriate control scheme have to be designed to enable the charge transfer via energy storage elements such as inductors. Using a manual approach to design balancing architectures can be tedious and error-prone, resulting in potentially suboptimal solutions. As a remedy, this paper presents an automatic synthesis of balancing circuits and their corresponding control, optimizing the number of required metal-oxide-semiconductor field-effect transistors, and necessary control signals. The proposed synthesis combines a satisfiability solver to explore the search space with a graph-based verification that iteratively excludes infeasible solutions until the optimal architectures are obtained. The experimental results are carried out for three given template circuits and two signal templates. The synthesis results in architectures that are superior in terms of all design objectives in comparison to solutions from literature that result from a manual design approach.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2016.2531049