Multiple-Criteria Approach to Optimisation of Multidimensional Data Models
This paper presents a novel approach to the adaptation of multidimensional data models to user-specific needs. The multidimensional data models used in contemporary business-intelligence systems are inherently complex. In order to reduce the complexity of these models, we propose using a qualitative...
Gespeichert in:
Veröffentlicht in: | Informatica (Vilnius, Lithuania) Lithuania), 2015-01, Vol.26 (2), p.283-312 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel approach to the adaptation of multidimensional data models to user-specific needs. The multidimensional data models used in contemporary business-intelligence systems are inherently complex. In order to reduce the complexity of these models, we propose using a qualitative multiple-criteria decision modelling method that is based on using a hierarchical tree of the criteria to decompose the larger problem into a group of smaller problems. The final value is derived by aggregating the criteria values using simple "if-then" rules, which form the knowledge-based expert rules in the hierarchical criteria tree that reflect users' preferences. The multiple-criteria analysis of the multidimensional model structure results in a multidimensional model that exhibits a reduced complexity and is adapted to users' needs. The model was validated using sales data from a medium-size enterprise. The qualitative (through questionnaires) and the quantitative (through usage mining) evaluation of the proposed methodology both showed that the proposed approach increases the ease-of-use of business intelligence systems and also contributes to a higher user satisfaction. |
---|---|
ISSN: | 0868-4952 1822-8844 |
DOI: | 10.15388/Informatica.2015.49 |