Efficiency of gas cooling and accretion at the disc–corona interface

In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-11, Vol.462 (4), p.4157-4170
Hauptverfasser: Armillotta, L., Fraternali, F., Marinacci, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding hot corona. Indeed, at the disc–corona interface, the mixing between the cold/metal-rich disc gas (T ≲ 104 K) and the hot coronal gas (T ≳ 106 K) can dramatically reduce the cooling time of a portion of the corona and produce its condensation and accretion. We studied the interaction between fountain clouds and corona in different galactic environments through parsec-scale hydrodynamical simulations, including the presence of thermal conduction, a key mechanism that influences gas condensation. Our simulations showed that the coronal gas condensation strongly depends on the galactic environment, in particular it is less efficient for increasing virial temperature/mass of the haloes where galaxies reside and it is fully ineffective for objects with virial masses larger than 1013 M⊙. This result implies that the coronal gas cools down quickly in haloes with low-intermediate virial mass (M vir ≲ 3 × 1012 M⊙) but the ability to cool the corona decreases going from late-type to early-type disc galaxies, potentially leading to the switching off of accretion and the quenching of star formation in massive systems.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw1930