Probability and Bias in Generating Supersoluble Groups

We discuss some questions related to the generation of supersoluble groups. First we prove that the number of elements needed to generate a finite supersoluble group G with good probability can be quite a lot larger than the smallest cardinality d(G) of a generating set of G. Indeed, if G is the fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2016-11, Vol.59 (4), p.899-909
Hauptverfasser: Crestani, Eleonora, De Franceschi, Giovanni, Lucchini, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss some questions related to the generation of supersoluble groups. First we prove that the number of elements needed to generate a finite supersoluble group G with good probability can be quite a lot larger than the smallest cardinality d(G) of a generating set of G. Indeed, if G is the free prosupersoluble group of rank d ⩾ 2 and dP(G) is the minimum integer k such that the probability of generating G with k elements is positive, then dP(G) = 2d + 1. In contrast to this, if k – d(G) ⩾ 3, then the distribution of the first component in a k-tuple chosen uniformly in the set of all the k-tuples generating G is not too far from the uniform distribution.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091515000504