In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement

Aerospace-grade unidirectional carbon fiber laminate interfaces are reinforced with high densities (>10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale stitches. Such nano-scale fiber reinforcement of the ply interfaces has been shown to increase interlaminar f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2016-09, Vol.133, p.33-39
Hauptverfasser: Guzman de Villoria, R., Hallander, P., Ydrefors, L., Nordin, P., Wardle, B.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 33
container_title Composites science and technology
container_volume 133
creator Guzman de Villoria, R.
Hallander, P.
Ydrefors, L.
Nordin, P.
Wardle, B.L.
description Aerospace-grade unidirectional carbon fiber laminate interfaces are reinforced with high densities (>10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale stitches. Such nano-scale fiber reinforcement of the ply interfaces has been shown to increase interlaminar fracture toughness and here we show that laminate in-plane strengths are also increased. Delamination damage modes associated with pre-ultimate failure are suppressed in the in-plane loaded laminates, significantly increasing load-carrying capability: tension-bearing (bolt pull out) critical strength by 30%, open-hole compression ultimate strength by 14%, and L-section bending energy and deflection by more than 25%. No increase in interlaminar or laminate thickness is observed due to the A-CNTs, but rather the ∼10 nm diameter carbon nanotubes interdigitate between carbon fibers in the adjacent laminae, i.e., the observed reinforcement is not due to formation of a thicker interlayer. These increases in substructural in-plane strengths are in stark contrast to degradation that typically occurs with existing 3D reinforcement approaches such as stitching, weaving and z-pinning.
doi_str_mv 10.1016/j.compscitech.2016.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855366967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026635381630687X</els_id><sourcerecordid>1855366967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-56eef420315e920d853553015c44d77dbdc545a7414782819551dcb256f11973</originalsourceid><addsrcrecordid>eNqNkE1LwzAYx4MoOKffId68tCZtk7RHGb4MBl52D2nydMtok5pkA7-9LfXg0dMDf_4vPD-EHinJKaH8-ZRrP4xR2wT6mBeTlBORE8Kv0IrWoskoYeQarUjBeVaysr5FdzGeCCGCNcUK9VuXjb1ygGMK4A7piMEdldMwgEvYd7hXg3UqgcHzko_TUsQXq7Dq7cHNsgqtd9gp59O5BWxdgrCkAg5gXefDUnePbjrVR3j4vWu0f3vdbz6y3ef7dvOyy3TJqpQxDtBVBSkpg6YgpmYlYyWhTFeVEcK0RrOKKVHRStRFTRvGqNFtwXhHaSPKNXpaasfgv84Qkxxs1NDPb_pzlLSe6jhv-GxtFqsOPsYAnRyDHVT4lpTIGbA8yT-A5QxYEiEnwFN2s2RheuViIcjJBRM5YwPoJI23_2j5AQuxi_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855366967</pqid></control><display><type>article</type><title>In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Guzman de Villoria, R. ; Hallander, P. ; Ydrefors, L. ; Nordin, P. ; Wardle, B.L.</creator><creatorcontrib>Guzman de Villoria, R. ; Hallander, P. ; Ydrefors, L. ; Nordin, P. ; Wardle, B.L.</creatorcontrib><description>Aerospace-grade unidirectional carbon fiber laminate interfaces are reinforced with high densities (&gt;10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale stitches. Such nano-scale fiber reinforcement of the ply interfaces has been shown to increase interlaminar fracture toughness and here we show that laminate in-plane strengths are also increased. Delamination damage modes associated with pre-ultimate failure are suppressed in the in-plane loaded laminates, significantly increasing load-carrying capability: tension-bearing (bolt pull out) critical strength by 30%, open-hole compression ultimate strength by 14%, and L-section bending energy and deflection by more than 25%. No increase in interlaminar or laminate thickness is observed due to the A-CNTs, but rather the ∼10 nm diameter carbon nanotubes interdigitate between carbon fibers in the adjacent laminae, i.e., the observed reinforcement is not due to formation of a thicker interlayer. These increases in substructural in-plane strengths are in stark contrast to degradation that typically occurs with existing 3D reinforcement approaches such as stitching, weaving and z-pinning.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2016.07.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon fibers ; Carbon nanotubes ; Hybrid composite ; Interlaminar ; Laminates ; Mechanical properties ; Nanostructure ; Reinforcement ; Strength ; Structural composites ; Ultimate tensile strength</subject><ispartof>Composites science and technology, 2016-09, Vol.133, p.33-39</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-56eef420315e920d853553015c44d77dbdc545a7414782819551dcb256f11973</citedby><cites>FETCH-LOGICAL-c354t-56eef420315e920d853553015c44d77dbdc545a7414782819551dcb256f11973</cites><orcidid>0000-0003-3530-5819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2016.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Guzman de Villoria, R.</creatorcontrib><creatorcontrib>Hallander, P.</creatorcontrib><creatorcontrib>Ydrefors, L.</creatorcontrib><creatorcontrib>Nordin, P.</creatorcontrib><creatorcontrib>Wardle, B.L.</creatorcontrib><title>In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement</title><title>Composites science and technology</title><description>Aerospace-grade unidirectional carbon fiber laminate interfaces are reinforced with high densities (&gt;10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale stitches. Such nano-scale fiber reinforcement of the ply interfaces has been shown to increase interlaminar fracture toughness and here we show that laminate in-plane strengths are also increased. Delamination damage modes associated with pre-ultimate failure are suppressed in the in-plane loaded laminates, significantly increasing load-carrying capability: tension-bearing (bolt pull out) critical strength by 30%, open-hole compression ultimate strength by 14%, and L-section bending energy and deflection by more than 25%. No increase in interlaminar or laminate thickness is observed due to the A-CNTs, but rather the ∼10 nm diameter carbon nanotubes interdigitate between carbon fibers in the adjacent laminae, i.e., the observed reinforcement is not due to formation of a thicker interlayer. These increases in substructural in-plane strengths are in stark contrast to degradation that typically occurs with existing 3D reinforcement approaches such as stitching, weaving and z-pinning.</description><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Hybrid composite</subject><subject>Interlaminar</subject><subject>Laminates</subject><subject>Mechanical properties</subject><subject>Nanostructure</subject><subject>Reinforcement</subject><subject>Strength</subject><subject>Structural composites</subject><subject>Ultimate tensile strength</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LwzAYx4MoOKffId68tCZtk7RHGb4MBl52D2nydMtok5pkA7-9LfXg0dMDf_4vPD-EHinJKaH8-ZRrP4xR2wT6mBeTlBORE8Kv0IrWoskoYeQarUjBeVaysr5FdzGeCCGCNcUK9VuXjb1ygGMK4A7piMEdldMwgEvYd7hXg3UqgcHzko_TUsQXq7Dq7cHNsgqtd9gp59O5BWxdgrCkAg5gXefDUnePbjrVR3j4vWu0f3vdbz6y3ef7dvOyy3TJqpQxDtBVBSkpg6YgpmYlYyWhTFeVEcK0RrOKKVHRStRFTRvGqNFtwXhHaSPKNXpaasfgv84Qkxxs1NDPb_pzlLSe6jhv-GxtFqsOPsYAnRyDHVT4lpTIGbA8yT-A5QxYEiEnwFN2s2RheuViIcjJBRM5YwPoJI23_2j5AQuxi_E</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Guzman de Villoria, R.</creator><creator>Hallander, P.</creator><creator>Ydrefors, L.</creator><creator>Nordin, P.</creator><creator>Wardle, B.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3530-5819</orcidid></search><sort><creationdate>20160914</creationdate><title>In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement</title><author>Guzman de Villoria, R. ; Hallander, P. ; Ydrefors, L. ; Nordin, P. ; Wardle, B.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-56eef420315e920d853553015c44d77dbdc545a7414782819551dcb256f11973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Hybrid composite</topic><topic>Interlaminar</topic><topic>Laminates</topic><topic>Mechanical properties</topic><topic>Nanostructure</topic><topic>Reinforcement</topic><topic>Strength</topic><topic>Structural composites</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzman de Villoria, R.</creatorcontrib><creatorcontrib>Hallander, P.</creatorcontrib><creatorcontrib>Ydrefors, L.</creatorcontrib><creatorcontrib>Nordin, P.</creatorcontrib><creatorcontrib>Wardle, B.L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzman de Villoria, R.</au><au>Hallander, P.</au><au>Ydrefors, L.</au><au>Nordin, P.</au><au>Wardle, B.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement</atitle><jtitle>Composites science and technology</jtitle><date>2016-09-14</date><risdate>2016</risdate><volume>133</volume><spage>33</spage><epage>39</epage><pages>33-39</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Aerospace-grade unidirectional carbon fiber laminate interfaces are reinforced with high densities (&gt;10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale stitches. Such nano-scale fiber reinforcement of the ply interfaces has been shown to increase interlaminar fracture toughness and here we show that laminate in-plane strengths are also increased. Delamination damage modes associated with pre-ultimate failure are suppressed in the in-plane loaded laminates, significantly increasing load-carrying capability: tension-bearing (bolt pull out) critical strength by 30%, open-hole compression ultimate strength by 14%, and L-section bending energy and deflection by more than 25%. No increase in interlaminar or laminate thickness is observed due to the A-CNTs, but rather the ∼10 nm diameter carbon nanotubes interdigitate between carbon fibers in the adjacent laminae, i.e., the observed reinforcement is not due to formation of a thicker interlayer. These increases in substructural in-plane strengths are in stark contrast to degradation that typically occurs with existing 3D reinforcement approaches such as stitching, weaving and z-pinning.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2016.07.006</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3530-5819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2016-09, Vol.133, p.33-39
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_1855366967
source ScienceDirect Journals (5 years ago - present)
subjects Carbon fibers
Carbon nanotubes
Hybrid composite
Interlaminar
Laminates
Mechanical properties
Nanostructure
Reinforcement
Strength
Structural composites
Ultimate tensile strength
title In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-plane%20strength%20enhancement%20of%20laminated%20composites%20via%20aligned%20carbon%20nanotube%20interlaminar%20reinforcement&rft.jtitle=Composites%20science%20and%20technology&rft.au=Guzman%20de%20Villoria,%20R.&rft.date=2016-09-14&rft.volume=133&rft.spage=33&rft.epage=39&rft.pages=33-39&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2016.07.006&rft_dat=%3Cproquest_cross%3E1855366967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855366967&rft_id=info:pmid/&rft_els_id=S026635381630687X&rfr_iscdi=true