In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement
Aerospace-grade unidirectional carbon fiber laminate interfaces are reinforced with high densities (>10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale stitches. Such nano-scale fiber reinforcement of the ply interfaces has been shown to increase interlaminar f...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2016-09, Vol.133, p.33-39 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aerospace-grade unidirectional carbon fiber laminate interfaces are reinforced with high densities (>10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale stitches. Such nano-scale fiber reinforcement of the ply interfaces has been shown to increase interlaminar fracture toughness and here we show that laminate in-plane strengths are also increased. Delamination damage modes associated with pre-ultimate failure are suppressed in the in-plane loaded laminates, significantly increasing load-carrying capability: tension-bearing (bolt pull out) critical strength by 30%, open-hole compression ultimate strength by 14%, and L-section bending energy and deflection by more than 25%. No increase in interlaminar or laminate thickness is observed due to the A-CNTs, but rather the ∼10 nm diameter carbon nanotubes interdigitate between carbon fibers in the adjacent laminae, i.e., the observed reinforcement is not due to formation of a thicker interlayer. These increases in substructural in-plane strengths are in stark contrast to degradation that typically occurs with existing 3D reinforcement approaches such as stitching, weaving and z-pinning. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2016.07.006 |