Performance enhancement of X-ray pulsar navigation using autonomous optical sensor

This paper develops an integrated navigation method based on the X-ray pulsar navigation (XNAV) system and an autonomous optical navigation system for spacecrafts. The X-ray pulsar navigation is implemented by using the difference between the measured and predicated pulse arrival time, which is calc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2016-11, Vol.128, p.473-484
Hauptverfasser: Kai, Xiong, Chunling, Wei, Liangdong, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops an integrated navigation method based on the X-ray pulsar navigation (XNAV) system and an autonomous optical navigation system for spacecrafts. The X-ray pulsar navigation is implemented by using the difference between the measured and predicated pulse arrival time, which is calculated by comparing an observed pulse profile with a standard pulse profile. A problem arises from the X-ray signal processing in that the spacecraft’s orbit information, which may be unknown, is required to construct the observed pulse profile. The effect of the spacecraft orbit error on the accuracy of the pulse TOA (time of arrival) difference determination is analyzed. It is specified that the performance of the XNAV system may be degraded in the presence of large orbit error. In order to improve the navigation accuracy, an integrated navigation scheme is presented by fusing the measurement information of a X-ray detector and an ultraviolet optical sensor. The XNAV/optical integrated navigation system is effective to mitigate the effect of the spacecraft orbit error. The superiority of the presented scheme is illustrated through numerical simulations. •The XNAV is studied.•An navigation scheme is presented.•The accuracy is improved.
ISSN:0094-5765
1879-2030
DOI:10.1016/j.actaastro.2016.08.007