The representation function for sums of three squares along arithmetic progressions
For positive integers n, let r(n) = #{(x, y, z)[member of] [Z.sup.3] : [x.sup.2] + [y.sup.2] + [z.sup.2] = n}. Let g be a positive integer, and let A mod M be any congruence class containing a squarefree integer. We show that there are infinitely many squarefree positive integers n [equivalent to] A...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Japan Academy. Series A. Mathematical sciences 2016-10, Vol.92 (8), p.96-99 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For positive integers n, let r(n) = #{(x, y, z)[member of] [Z.sup.3] : [x.sup.2] + [y.sup.2] + [z.sup.2] = n}. Let g be a positive integer, and let A mod M be any congruence class containing a squarefree integer. We show that there are infinitely many squarefree positive integers n [equivalent to] A mod M for which g divides r(n). This generalizes a result of Cho. Key words: Class number; imaginary quadratic field; three squares. |
---|---|
ISSN: | 0386-2194 |
DOI: | 10.3792/pjaa.92.96 |