The representation function for sums of three squares along arithmetic progressions

For positive integers n, let r(n) = #{(x, y, z)[member of] [Z.sup.3] : [x.sup.2] + [y.sup.2] + [z.sup.2] = n}. Let g be a positive integer, and let A mod M be any congruence class containing a squarefree integer. We show that there are infinitely many squarefree positive integers n [equivalent to] A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Japan Academy. Series A. Mathematical sciences 2016-10, Vol.92 (8), p.96-99
1. Verfasser: Pollack, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For positive integers n, let r(n) = #{(x, y, z)[member of] [Z.sup.3] : [x.sup.2] + [y.sup.2] + [z.sup.2] = n}. Let g be a positive integer, and let A mod M be any congruence class containing a squarefree integer. We show that there are infinitely many squarefree positive integers n [equivalent to] A mod M for which g divides r(n). This generalizes a result of Cho. Key words: Class number; imaginary quadratic field; three squares.
ISSN:0386-2194
DOI:10.3792/pjaa.92.96