Visual tracking with VG-RAM Weightless Neural Networks

We present a biologically inspired long-term object tracking system based on Virtual Generalizing Random Access Memory (VG-RAM) Weightless Neural Networks (WNN). VG-RAM WNN is an effective machine learning technique that offers simple implementation and fast training. Our system models the biologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2016-03, Vol.183, p.90-105
Hauptverfasser: Berger, Mariella, De Souza, Alberto F., Neto, Jorcy de Oliveira, de Aguiar, Edilson, Oliveira-Santos, Thiago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a biologically inspired long-term object tracking system based on Virtual Generalizing Random Access Memory (VG-RAM) Weightless Neural Networks (WNN). VG-RAM WNN is an effective machine learning technique that offers simple implementation and fast training. Our system models the biological saccadic eye movement, the transformation suffered by the images captured by the eyes from the retina to the Superior Colliculus (SC), and the response of SC neurons to previously seen patterns. We evaluated the performance of our system using a well-known visual tracking database. Our experimental results show that our approach is capable of reliably and efficiently track an object of interest in a video with accuracy equivalent or superior to related work.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2015.04.127