Assessing the importance of artificial nest‐sites in the population dynamics of endangered Northern Aplomado Falcons Falco femoralis septentrionalis in South Texas using stochastic simulation models

Habitat availability might be the most important determinant of success for a species reintroduction programme, making investigation of the quality and quantity of habitat needed to produce self‐sustaining populations a research priority for reintroduction ecologists. We used a stochastic model of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ibis (London, England) England), 2017-01, Vol.159 (1), p.14-25
Hauptverfasser: McClure, Christopher J. W., Pauli, Benjamin P., Mutch, Brian, Juergens, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Habitat availability might be the most important determinant of success for a species reintroduction programme, making investigation of the quality and quantity of habitat needed to produce self‐sustaining populations a research priority for reintroduction ecologists. We used a stochastic model of population dynamics to predict whether attempts to improve existing breeding territories using artificial nest platforms improved the population growth rate and persistence of a reintroduced population of Northern Aplomado Falcons Falco femoralis septentrionalis in South Texas. We further assessed whether the creation of new territories, i.e. conversion of entire areas to suitable habitat and not simply the erection of nest platforms, would lead to a subsequent increase in the nesting population. Our model was able to reproduce several characteristics of the wild population and predicted the number of breeding pairs per year strikingly well (R2 = 0.97). Simulations revealed that the addition of nest platforms improved productivity such that the population would decline to extinction without them but is stable since their installation. Moreover, the model predicted that the increase in productivity due to nest platforms would cause the population to saturate available breeding territories, at which point the population would contain a moderate proportion of non‐territorial birds that could occupy territories if new ones become available. Population size would therefore be proportional to the increase in available territories. Our study demonstrates that artificial nest‐sites can be an effective tool for the management of reintroduced species.
ISSN:0019-1019
1474-919X
DOI:10.1111/ibi.12419