Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation
A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was apphed for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current densit...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2016-12, Vol.50 (12), p.21-31 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was apphed for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500 A/m2, circulation rate of 5 mL/min, AC dosage of 50 g, and chloride concentration of 1.0 g/L), the average removal efficiencies of chemical oxygen demand (CODer), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254 nm (UV2s4) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV2s4 were 76.6, 20.1, and 42.5 mg/L, and 0.08 Abs/cm, respectively. The effluent concentration of CODer was less than 100 mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODer, NH3-N, TOC, and UV2s4 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electro- chemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/j.jes.2016.03.020 |