H2S inhibits angiotensin II-induced atrial Kv1.5 upregulation by attenuating Nox4-mediated ROS generation during atrial fibrillation

Our previous study demonstrated that angiotensin II (Ang II) upregulates the expression of Kv1.5, a promising target for atrial fibrillation (AF) therapy, by activating ROS-dependent P-Smad2/3 and P-ERK 1/2. A recent study showed that hydrogen sulfide (H2S) may modulate the effects of angiotensin II...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2017-01, Vol.483 (1), p.534-540
Hauptverfasser: Lu, Guihua, Xu, Chenggui, Tang, Kaiyu, Zhang, Juhong, Li, Qinglang, Peng, Longyun, Wang, Yesong, Huang, Zhibin, Gao, Xiuren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our previous study demonstrated that angiotensin II (Ang II) upregulates the expression of Kv1.5, a promising target for atrial fibrillation (AF) therapy, by activating ROS-dependent P-Smad2/3 and P-ERK 1/2. A recent study showed that hydrogen sulfide (H2S) may modulate the effects of angiotensin II (Ang II) by inhibiting the NADPH oxidase 4 (Nox4)-ROS signaling in the heart. The present study aimed to determine whether H2S is involved in the regulation of atrial Kv1.5 via ROS-related mechanisms in AF. Cultured neonatal rat atrial myocytes and a beagle model of AF were used for this study. In the neonatal rat atrial myocytes, quantitative PCR and enzyme immunoassays revealed that the mRNA expression levels of angiotensinogen, angiotensin-converting enzyme, and Ang II type I receptor (AT1R) and the Ang II supernatant concentration were significantly increased by hydrogen peroxide (H2O2) incubation, and these H2O2-induced alterations were reversed by diphenyleneiodonium, apocynin and H2S supplementation. Flow cytometry and Western blotting revealed that blockade of H2S biosynthesis using dl-propargylglycine increased ROS production and the expression of Ang II and Kv1.5. Sodium hydrosulfide (an exogenous H2S donor) and Nox4 siRNA inhibited Ang II-induced ROS production and Ang II-induced expression of Kv1.5, P-Smad2/3, P-ERK 1/2. Sodium hydrosulfide suppressed the Ang II-induced upregulation of Nox4. In our beagle AF model, 24 h of rapid atrial pacing (RAP) increased the atrial Ang II concentration, ROS production and the protein expression of Nox4, Kv1.5, P-Smad2/3 and P-ERK 1/2. These RAP-induced changes were inhibited by H2S supplementation and losartan (an AT1R blocker) pretreatment. In conclusion, our study indicates that H2S downregulates Ang II-induced atrial Kv1.5 expression by attenuating Nox4-related ROS-triggered P-Smad2/3 and P-ERK 1/2 activation during AF. H2S supplementation would be beneficial for AF treatment via the suppression of atrial Kv1.5 expression. •Mechanisms of H2S-related downregulation of atrial Kv1.5 channel during AF.•H2S-induced inhibition of atrial Ang II upregulation and ROS production are involved.•H2S decreases Kv1.5 by inactivation of Nox4-related P-Smad2/3 and P-ERK 1/2 signaling.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2016.12.110