Hypervalency in Organic Crystals: A Case Study of the Oxicam Sulfonamide Group
The theoretical charge density of the active pharmaceutical ingredient piroxicam (PXM) was evaluated through density functional theory with a localized basis set. To understand the electronic nature of the sulfur atom within the sulfonamide group, a highly ubiquitous functional group in pharmaceutic...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-12, Vol.120 (51), p.10289-10296 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theoretical charge density of the active pharmaceutical ingredient piroxicam (PXM) was evaluated through density functional theory with a localized basis set. To understand the electronic nature of the sulfur atom within the sulfonamide group, a highly ubiquitous functional group in pharmaceutical molecules, a theoretical charge density study was performed on PXM within the framework of Bader theory. Focus is on developing a topological description of the sulfur atom and its bonds within the sulfonamide group. It was found that sulfur d-orbitals do not participate in bonding. Instead, the existence of a strongly polarized (“ionic”) bonding structure is found through a combined topological and natural bonding orbital analysis. This finding is in stark contrast to long-held theories of the bonding structure of organic sulfonamide and has important implications for the parametrization of calculations using classical approaches. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.6b10703 |