The influence of piperine on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers

Purpose Piperine (PIP) has been found to inhibit P-glycoprotein (P-gp) function in rats, suggesting that it may have the potential to modulate P-gp-mediated drug efflux in humans. The aim of this study was to evaluate the effect of PIP on the pharmacokinetics of fexofenadine (FEX), a P-gp substrate,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of clinical pharmacology 2017-03, Vol.73 (3), p.343-349
Hauptverfasser: Bedada, Satish Kumar, Boga, Praveen Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Piperine (PIP) has been found to inhibit P-glycoprotein (P-gp) function in rats, suggesting that it may have the potential to modulate P-gp-mediated drug efflux in humans. The aim of this study was to evaluate the effect of PIP on the pharmacokinetics of fexofenadine (FEX), a P-gp substrate, in healthy volunteers. Methods An open-label, two-period, sequential study involving 12 healthy volunteers was conducted. A single oral dose of FEX 120 mg was given to volunteers during the control phase and after the treatment phase. A once-daily oral dose of PIP 20 mg was given to volunteers during the treatment phase (10 days). Blood samples were collected at predefined time intervals, and plasma samples containing FEX were analyzed by liquid chromatography-tandem mass spectrometry. Results Treatment with PIP significantly increased maximum plasma concentration of FEX [406.9 (control) vs. 767 ng/mL (treatment)] and area under the plasma concentration–time curve [3403.7 (control) vs. 5724.7 ng.h/mL (treatment)] when compared to the control phase. In contrast, PIP treatment significantly decreased apparent oral clearance of FEX [35.4 (control) vs. 20.7 L/h (treatment)] as compared to the control. There was no significant change observed in the half life and renal clearance of FEX between the treatment phase and control phase. Conclusions The results suggest that altered pharmacokinetics and enhanced bioavailability of FEX might be attributed to PIP-mediated inhibition of P-gp drug efflux. Therefore, intake of PIP or dietary supplements containing PIP may potentially enhance the absorption or bioavailability of P-gp substrate drugs in addition to FEX.
ISSN:0031-6970
1432-1041
DOI:10.1007/s00228-016-2173-3