Testosterone replacement attenuates intimal hyperplasia development in an androgen deficient model of vascular injury

Abstract Background Androgen deficiency (AD) is associated with increased risk of vascular disease. Dysfunctional remodeling of the vessel wall and atypical proliferative potential of vascular smooth muscle cells (VSMCs) are fundamental processes in the development of intimal hyperplasia (IH). We ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 2017-01, Vol.207, p.53-62
Hauptverfasser: Freeman, Brian M., MD, Univers, Junior, MD, Fisher, Richard K., MS, Kirkpatrick, Stacy S, Klein, Frederick A., MD, Freeman, Michael B., MD, Mountain, Deidra J.H., PhD, Grandas, Oscar H., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Androgen deficiency (AD) is associated with increased risk of vascular disease. Dysfunctional remodeling of the vessel wall and atypical proliferative potential of vascular smooth muscle cells (VSMCs) are fundamental processes in the development of intimal hyperplasia (IH). We have demonstrated an inverse relationship between dihydrotestosterone (DHT) levels, matrix metalloproteinase activity, and VSMC migration and proliferation in vitro . Here, we investigated the role of AD and testosterone (TST) replacement in IH development in an animal model of vascular injury to elucidate mechanisms modulated by AD that could be playing a role in the development of vascular pathogenesis. Methods Aged orchiectomized male rats underwent TST supplementation via controlled release pellet (0.5-35 mg). Young adult and middle-age adult intact (MI) and orchiectomized placebo (Plac) groups served as controls. All groups underwent balloon angioplasty of the left common carotid at a 14-d post-TST. Carotid tissue was collected at a 14-d post-balloon angioplasty and subjected to morphologic and immunohistochemical analyses. Human male VSMCs were treated with DHT (0-3000 nM) for 24 h then subjected to qPCR for gene expression analyses and costained for F-actin and G-actin for visualization of cytoskeletal organization. Results I:M ratio was increased in Plac, subphysiological, low-physiological, and high pharmacologic level TST animals compared with MI controls but was decreased with high-physiological TST supplementation. Injury-induced expression of previously defined matrix metalloproteinase remodeling enzymes was not significantly affected by TST status. Urotensin (UTS) receptor (UTSR) staining was low in injured vessels of all young adult intact, MI, and Plac controls but was significantly upregulated in all groups receiving exogenous TST supplementation, irrespective of dose. In vitro DHT exposure increased the expression of UTSR in VSMCs in a dose-dependent manner. However, this did not correlate with any change in proliferative markers. F:G actin staining revealed that DHT-induced cytoskeletal organization in a dose-dependent manner. Conclusions AD increased IH development in response to vascular injury, whereas physiological TST replacement attenuated this effect. AD-induced IH occurs independent of matrix remodeling mechanisms known to be heavily involved in vascular dysfunction, and AD alone does not affect the UTS and/or UTSR mechanism. Exogenous T
ISSN:0022-4804
1095-8673
DOI:10.1016/j.jss.2016.08.016