Electron heating in subpicosecond laser interaction with overdense and near-critical plasmas
In this work we investigate electron heating induced by intense laser interaction with micrometric flat solid foils in the context of laser-driven ion acceleration. We propose a simple law to predict the electron temperature in a wider range of laser parameters with respect to commonly used existing...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2016-11, Vol.94 (5-1), p.053201-053201, Article 053201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we investigate electron heating induced by intense laser interaction with micrometric flat solid foils in the context of laser-driven ion acceleration. We propose a simple law to predict the electron temperature in a wider range of laser parameters with respect to commonly used existing models. An extensive two-dimensional (2D) and 3D numerical campaign shows that electron heating is due to the combined actions of j×B and Brunel effect. Electron temperature can be well described with a simple function of pulse intensity and angle of incidence, with parameters dependent on pulse polarization. We then combine our model for the electron temperature with an existing model for laser-ion acceleration, using recent experimental results as a benchmark. We also discuss an exploratory attempt to model electron temperature for multilayered foam-attached targets, which have been proven recently to be an attractive target concept for laser-driven ion acceleration. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.94.053201 |