Interfacial Particle Dynamics: One and Two Step Yielding in Colloidal Glass
The yielding behavior of silica nanoparticles partitioned at an air–aqueous interface is reported. Linear viscoelasticity of the particle-laden interface can be retrieved via a time-dependent and electrolyte-dependent superposition, and the applicability of the “soft glassy rheology” (SGR) model is...
Gespeichert in:
Veröffentlicht in: | Langmuir 2016-12, Vol.32 (50), p.13472-13481 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The yielding behavior of silica nanoparticles partitioned at an air–aqueous interface is reported. Linear viscoelasticity of the particle-laden interface can be retrieved via a time-dependent and electrolyte-dependent superposition, and the applicability of the “soft glassy rheology” (SGR) model is confirmed. With increasing electrolyte concentration (φelect) in the aqueous subphase, a nonergodic state is achieved with particle dynamics arrested first from attraction induced bonding bridges and then from the cage effect of particle jamming, manifesting in a two-step yielding process under large amplitude oscillation strain (LAOS). The Lissajous curves disclose a shear-induced in-cage particle redisplacement within oscillation cycles between the two yielding steps, exhibiting a “strain softening” transitioning to “strain stiffening” as the interparticle attraction increases. By varying φelect and the particle spreading concentration, φSiO2 , a variety of phase transitions from fluid- to gel- and glass-like can be unified to construct a state diagram mapping the yielding behaviors from one-step to two-step before finally exhibiting one-step yielding at high φelect and φSiO2 . |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.6b03586 |